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Abstract. A multiple objective linear programming problem (P) involves the simultaneous maxi-
mization of two or more conflicting linear objective functions over a nonempty polyhedron X . Many
of the most popular methods for solving this type of problem, including many well-known interactive
methods, involve searching the efficient set XE of the problem. Generally, however, XE is a com-
plicated, nonconvex set. As a result, concepts and methods from global optimization may be useful
in searching XE . In this paper, we will explain in theory, and show via an actual application to citrus
rootstock selection in Florida, how the potential usefulness of the well-known interactive method
STEM for solving problem (P) in this way, can depend crucially upon how accurately certain global
optimization problems involving minimizations over XE are solved. In particular, we will show both
in theory and in practice that the choice of whether to use the popular but unreliable “payoff table”
approach or to use one of the lesser known, more accurate global optimization methods to solve
these problems can determine whether STEM succeeds or fails as a decision aid. Several lessons and
conclusions of transferable value derived from this research are also given.

Key words: Multiple objective linear programming, Optimization over the efficient set, Interactive
methods, Global optimization, Citrus rootstock selection.

1. Introduction

The multiple objective linear programming problem (P) involves the simultaneous
maximization of p � 2 conflicting linear objective functions over a nonempty
polyhedron X . Typically, this problem is solved by a decision maker (DM) who,
with the aid of an analyst, searches the feasible region X of the problem for a most
preferred solution.

The concept of an efficient solution has played an important role in the analysis
and solution of this problem. An efficient solution x� for problem (P) is an element
ofX such that no other element of X exists which achieves a value at least as large
as x� in every objective function and a strictly larger value than x� in at least one
objective function. It can be shown that except under very unusual circumstances,
there will always exist a most preferred solution to the problem that is also an
efficient solution.
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Consequently, many of the most popular approaches for analyzing and solving
a multiple objective linear programming problem search all, or at least some, of the
efficient solution setXE in order to find a most preferred solution. Included among
these types of approaches are, for instance, the vector maximization approach,
interactive approaches, and several others (see, for instance, books and general
surveys by Cohon [29], Evans [35], Goicoechea et al. [41], Ringuest [55], Rosenthal
[56], Sawaragi et al. [58], Steuer [63], Yu [70, 71], Zeleny [73] and references
therein). In the past 25 years, a vast number of applications of multiple objective
linear programming has been reported in a wide variety of disciplines, including
academic planning [39], macroeconomic analysis [5], nutrition planning [2, 19],
public policy making [8], capital budgeting [26], meat processing [63], finance and
banking [33], forest management [64], production planning [40], logistics [50] and
many others too numerous to mention. In view of these observations, it has become
especially important to develop practical methods for searching the efficient set of
a multiple objective linear program.

Unfortunately, searching the efficient set XE of a multiple objective linear
program for a most preferred solution is generally a very challenging task. While a
variety of reasons for this difficulty exist, chief among them is thatXE is generally
a large, complicated nonconvex subset of the feasible region X . This suggests that
to generate or search XE or portions of XE , concepts and methods from global
optimization may be useful.

Yet, with only a few exceptions, the concepts and methods developed in the past
25 years for multiple objective linear programming have relied mainly on using
local search ideas from traditional linear and convex programming. Since these
local search ideas were never intended to provide a search of a large, complicated
nonconvex set such as XE , none of the methods developed to date for solving
multiple objective linear programming problems has proven to be wholly adequate
(see Benson and Sayin [22], Shin and Ravindran [60], Steuer [63] and references
therein for further details).

In recent years, a resurgence of interest in the interactive strategies for searching
XE has become apparent [1, 56, 60, 63]. An interactive method for searching
XE for a most-preferred solution consists of a finite number of DM-machine
interactions that generate a discrete sample of points from XE . During a typical
iteration, a computer program first finds a point in XE by solving an appropriate
single-objective optimization problem. Next, the DM is asked to assess his or her
relative preference for this point. Based upon this information, the single-objective
optimization problem is modified, and another iteration begins. These DM-machine
interactions are repeated until the DM indicates that the current solution is a most-
preferred solution to the problem. A large number of interactive algorithms using a
variety of approaches for problem (P) have been proposed. For details concerning
these algorithms, the reader may consult any of a number of survey papers [1, 35,
56, 60] and textbooks [28, 41, 58, 63, 70].
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In this paper, we will show in both theory and practice that the use of appro-
priate global optimization techniques can be crucial to the achievement of success
in applied multiple objective linear programming. In particular, we will explain
in theory and show via an actual application how the potential usefulness of the
popular STEM [7] interactive method for solving a multiple objective linear pro-
gram can depend critically on how accurately certain global optimization problems
involving minimizations over XE are solved. The application that we will use
to illustrate this point is one that we carried out ourselves for the purposes of
developing procedures for solving the citrus rootstock selection problem in Florida
[18]. Lessons and conclusions of transferable value that can be derived from this
research will also be explained.

The organization of this paper is as follows. In Section 2, notation and prelimi-
naries concerning problem (P), the need for global optimization overXE in solving
problem (P), and the STEM algorithm will be given. In Section 3, we will explain
why, in theory, researchers have been concerned with the accuracy with which the
difficult global minimizations over XE called for by STEM are solved. We will
also point out that in practice, however, these concerns have not yet been addressed.
In Section 4 we briefly outline the citrus rootstock selection problem in Florida
and the multiple objective linear programming model (ROOT) that we have con-
structed for it. Section 5 describes two interactive solution attempts of the model
(ROOT) that we undertook using STEM. In the first attempt, which failed, a simple
but unpredictable ‘payoff table’ procedure [7] was used to attempt to estimate the
minima over XE required by STEM. In the second attempt, which succeeded, a
much more accurate global optimization heuristic recently developed by Benson
and Sayin [20] was used to provide these estimates. Lessons and conclusions of
transferable value are given in the last section.

2. Notation and preliminaries

Adopting the notation of Geoffrion [38], we may represent a multiple objective
linear programming problem (P) by

VMAX: Cx; subject to x 2 X;

whereC is a p�nmatrix whose rows ci, i = 1; 2; . . . ; p, are the coefficients of the p
linear objective functions of the problem, and X � R

n is a nonempty polyhedron.
Since the objective functions are, in general, conflicting, the ‘maximization’ aspect
of problem (P) is not a priori well defined. Usually, a DM, together with an analyst,
seeks a most preferred solution x�, if one exists, to problem (P), i.e. a solution x�

that belongs to X and maximizes v[hc1; xi; hc2; xi; . . . ; hcp; xi] over X , where
v : Rp ! R is the value function of the DM for problem (P).

Unfortunately, the value function v of the DM is usually not explicitly available
or computable (cf. Sawaragi et al. [58], Shin and Ravindran [60] and Steuer [63]).
In cases such as these, vector maximization methods or interactive algorithms for
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problem (P) are usually used. The theoretical premise behind these algorithms is
that, in the absence of v, to find a most preferred solution, the DM can search
appropriate subsets of X rather than the entire set X . Two of these subsets are
defined as follows.

DEFINITION 2.1. The set XE of all efficient (or nondominated) solutions x� for
problem (P) is the set of all points x� 2 X for which there exists no x 2 X such
that Cx � Cx� and Cx 6= Cx�.

DEFINITION 2.2. The set XE of all weakly-efficient (or weakly-nondominated)
solutions x� for problem (P) is the set of all points x� 2 X for which there exists
no x 2 X such that Cx > Cx�.

Notice from Definitions 2.1 and 2.2 thatXE � XE . The rationale for searching
XE or XE for a most preferred solution comes, in part, from the following result.

PROPOSITION 2.1. If X is bounded and the value function v : RP ! R of the
DM for problem (P) is coordinatewise nondecreasing, then there exists a most
preferred solution of the DM for problem (P) which belongs to XE and, hence, to
XE .

Proposition 2.1 is a simple result to prove. For a proof of this proposition and
of related results, see Benson and Aksoy [16], Henig [42], Soland [62] and Steuer
[63].

Although bothXE andXE are connected sets and are typically smaller thanX ,
both are, unfortunately, generally quite complicated, nonconvex sets [10, 23, 70,
72]. In particular, bothXE andXE consist of unions of faces ofX , that, in general,
may have great variations in their dimensions and locations within X (cf., e.g., [3,
15, 34, 63, 70]). Consequently, searching XE or XE for a most preferred solution
is, in fact, a difficult global optimization problem. In spite of this, it seems that very
few vector maximization methods or interactive methods for searching XE or XE

take explicit account of this important aspect of the problem (cf. Armann [4] and
Benson and Sayin [22]). Instead, most of these methods are based upon local search
ideas that can be implemented by simplex-type or combinatorial search techniques
[3, 34, 44, 63, 70, 72].

There are however, a few methods for searching XE or XE that take the
global nature of the search into account, either explicitly or implicitly. Some of
these methods are vector maximization methods [4, 22]. Others use the interactive
approach (cf., e.g., [6, 7, 47, 52]).

The interactive methods that acknowledge the global nature of the search fre-
quently do so implicitly by calling for the computation of the so-called range of
compromise for each objective function. This range is defined as follows.

DEFINITION 2.3. For each i = 1; 2; . . . ; p, the range of compromise for objective
function i of problem (P) is a subinterval of the extended real number line given
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by [mi;Mi] = ft 2 Rjmi � t � Mig, where mi and Mi denote the infimum and
the supremum, respectively, of hci; xi over XE .

Notice that when X is bounded, the range of compromise for each objective
function of problem (P) is also bounded.

Those interactive algorithms that use the concept of the range of compromise
do so for a variety of reasons. In some cases, the range of compromise helps the
DM to set goals or aspiration levels called for by the algorithm. In other cases,
this range simply helps the DM to answer the preference-related questions called
for by the algorithm. Other possible uses involve ranking or eliminating objective
functions (see Weistroffer [66], Dessouky et al. [32], Isermann and Steuer [45] and
Benson [11] for details.)

Notice that regardless of the purpose for which an algorithm calls for computing
the ranges of compromise, the need for these ranges implicitly acknowledges the
global nature of searching XE . This becomes apparent by noting that computing
each range of compromise necessitates solving two global optimization problems
overXE . The first of these is the maximization of an objective function hci; xi over
XE . It is well known that this can be easily accomplished via linear programming,
i.e., without special global optimization tools (cf., e.g., Benayoun et al. [7], Evans
and Steuer [36]). However, the second problem, calculating the minimum value
of an objective function hci; xi over XE , involves the global minimization of a
linear function over a nonconvex set. This is a difficult global optimization problem
which, as in most other classes of global optimization problems, is typically plagued
by having numerous local optima that are not global [14, 17, 43, 48]. Further
confounding the situation is the fact that the feasible region XE of this problem
cannot be expressed in the traditional mathematical programming format as a
system of functional inequalities.

One of the earliest and most popular interactive algorithms for problem (P),
called the STEP Method (or simply STEM) [7], calls for computing the ranges of
compromise for each objective function. Therefore, to implement STEM, several
global minimization problems over XE must be solved.

As a final preliminary to presenting our main research results, we will briefly
explain the steps and properties of the STEM method for problem (P). Amplifica-
tions and further details concerning STEM can be found in [7, 18, 63].

The idea behind STEM is to interactively search with the DM for a most
preferred solution to problem (P) by generating and examining points inXE � XE .
During each STEM iteration h, a weakly-efficient point xh is first generated by
solving a certain weighted-minimax problem. Next, the DM examines this point
to see if it is a most preferred solution. If so, the algorithm stops. Otherwise, the
DM specifies an index set K � f1; 2; . . . ; pg of criteria whose current values
hck; x

hi; k 2 K , he is willing to allow to decrease in order to potentially attain
increases in one or more of the other criteria values hck; xhi; k 2 f1; 2; . . . ; pgnK .
In addition, for each k 2 K , the DM specifies the maximum amount �k > 0 that
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he is willing to allow criterion k to decrease. Using K and the values �k; k 2
K , constraints of the weighted-minimax problem are appropriately modified in
preparation for generating a new weakly-efficient point in the next iteration.

To use STEM, X must be bounded. Therefore, we assume henceforth that X
is bounded. Recall that in this case, each range of compromise [mk;Mk]; k =
1; 2; . . . ; p, is finite. In addition, in this case, the vectors MT = [M1;M2; . . . ;Mp]
and mT = [m1;m2; . . . ;mp] are usually called the ideal point and the nadir point,
respectively, for problem (P). The steps of the STEM algorithm may be stated as
follows.

STEM ALGORITHM FOR PROBLEM (P)

Initialization Step 0.

Step 0.1. Compute the ideal point M and the nadir point m for problem (P).

Step 0.2. For each k = 1; 2; . . . ; p compute the value of Lk =
Pn

j=1 jckj j.

Step 0.3. For each k = 1; 2; . . . ; p, compute the criterion weight �k according
to the formula

�k = [(Mk �mk)=max(jMkj; jmkj)](Lk=kckk); (1)

where k � k denotes the Euclidean norm.

Step 0.4. Set K = �; h = 1 and X1 = X , and go to Iteration h.

Iteration h, h � 1.

Step h.1. Find an optimal solution (xh; th) 2 R
n+1 to the linear program (PK)

given by

min t;

s.t. t �

0
@�k=

pX
j=1

�j

1
A (Mk � hck; xi); k 2 f1; 2; . . . ; pgnK;

x 2 X
h
;

t � 0:

Step h.2. Compute hck; xhi; k = 1; 2; . . . ; p, and, given xh and these objective
function values, ask the DM if he feels satisfied that the algorithm
can stop with xh as the final solution. If so, stop with xh as a most
preferred solution. If not, continue.

Step h.3. Ask the DM to identify the index setK � f1; 2; . . . ; pg of the criteria
that he is willing to relax in order to potentially gain increases in one
or more of the other criteria. For each k 2 K , ask the DM to specify
the maximum amount �k > 0 that he is willing to relax criterion k.
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Step h.4. Set Xh+1 = fx 2 Xjhck; xi � hck; x
hi � �k, k 2 K; hck; xi �

hck; x
hi, k 2 f1; 2; . . . ; pgnKg and set h = h+ 1. Go to Iteration h.

At each iteration h of STEM, the linear program (PK) finds a feasible solution
xh to problem (P) which minimizes the maximum of the weighted deviations
wk(Mk � hck; xi) of the values of the criteria k 2 f1; 2; . . . ; pgnK from their
associated ideal point values Mk, k 2 f1; 2; . . . ; pgnK , subject to x 2 Xh, where
for each k, the weight wk is given by

wk =

0
@�k=

pX
j=1

�j

1
A : (2)

It is easy to see from (1)–(2) that for each k 2 f1; 2; . . . ; pg, if Mk > mk, then wk

will be positive. This, in turn, can be shown to imply that wheneverM > m, each
solution xh generated by STEM belongs to XE . Notice that due to the constraints
of problem (PK), xh is not generally an extreme point of X .

For each k 2 f1; 2; . . . ; pg, the purpose of the term (Lk=kckk) used in formula
(1) for �k in the algorithm is to rescale the coefficients of ck in the linear program
(PK). The intention is to yield coefficient vectors of similar magnitudes [7, 63]. The
other term in this formula defines the relative range of compromise for criterion
k 2 f1; 2; . . . ; pg. Thus, the intention of (1)–(2) is to yield weights wk; k 2
f1; 2; . . . ; pg, for use in problem (PK) that have larger values for those objective
functions with larger relative ranges of compromise overXE , rather than for those
with large-magnitude coefficients. Such weights are expected to increase the ability
of the DM to effectively use STEM [63]. Notice from (1)–(2) that the accuracy
of the assessment of each weight wk depends, in part, upon how accurately the
corresponding criterion hck; xi is minimized overXE in computing the nadir point
m in Step 0.1.

During each iteration h of STEM, the relaxation quantities �k; k 2 K , chosen
by the DM in Step h.3 are based upon his priorities and aspiration levels. Typically,
to help guide the DM in his choices for the values of �k; k 2 K , the analyst is
encouraged to suggest to the DM that he also refer to the ranges of compromise
[mk;Mk]; k 2 K [58].

The STEM algorithm has received relatively-more attention and study than
most other interactive algorithms for problem (P). Although several reasons can
be cited for this, chief among them is that STEM is relatively easy for the DM to
use and understand, that it does not confine its search of XE (and thus of XE) to
extreme points of X , and that it has proven useful in certain practical instances
[58, 63, 65].

3. Global optimization in STEM: theoretical issues

Notice that except for finding the ideal point M and the nadir point m in Step
0.1, the computational steps in the STEM algorithm can be easily implemented
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via simple matrix-vector operations and linear programming methods. However,
as we have seen, the global maximizations and minimizations over XE called for
in calculating M and m, respectively, are not standard problems.

Finding M requires finding, for each k 2 f1; 2; . . . ; pg, the optimal value Mk

of the global optimization problem

maxhck; xi; subject to x 2 XE :

From the time that STEM was proposed, it has been known that for each k 2
f1; 2; . . . ; pg, Mk is alternatively given by

Mk = maxhck; xi; subject to x 2 X; (3)

i.e., that Mk can be found by standard linear programming methods [7, 63].
However, to find the nadir pointm, one must calculate, for each k = 1; 2; . . . ; p,

the optimal value mk of the difficult global minimization problem (Pk) over XE

given by

minhck; xi; subject to x 2 XE :

Researchers have been suspecting for several years that, at least in theory,
unless the nadir point m is calculated with sufficient accuracy, various algorithms
that rely on m to solve problem (P) should not be expected to necessarily find a
most preferred solution to the problem. The STEM method has been consistently
included among the algorithms that could fail for this reason (cf., e.g., Ghiassi et
al. [40], Weistroffer [66], Isermann and Steuer [45], and Reeves and Reid [54]).

In the case of the STEM method, incorrect estimates of m have a direct and
an indirect effect. The direct effect, as seen from (1)–(2), is that the minimax
weights wk, k = 1; 2; . . . ; p, used in problem (PK) are improperly calculated. The
indirect effect is that the DM, armed with inaccurate ranges of compromise, is
more likely to internally develop inappropriate aspiration levels for the objective
functions. This, in turn, is likely to cause the DM difficulty in choosing appropriate
relaxation quantities �k for the objective functions k 2 K in Step h.4 [58]. Taken
together, these phenomena reduce the likelihood that STEM will generate solutions
for problem (P) that are attractive to the DM.

The theoretical response to the concern over the availability of methods for
accurately determining the nadir pointm has been quite strong, especially in recent
years. In particular, a variety of exact global optimization algorithms (cf., e.g.,
Benson [11–13], Benson and Sayin [21], Bolintineanu [24], Dauer and Fosnaugh
[31], Fulop [37], Philip [53] and references therein) and heuristic methods (see,
e.g., Benayoun et al. [7], Benson and Sayin [20], Dauer [30], Dessouky et al. [32],
Korhonen et al. [48] and references therein) capable of determining or estimating
m has been proposed.

In spite of the theoretical concern that nadir points should be globally estimated
with accuracy sufficient for their use in algorithms for problem (P), it appears that,
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in actual practice, users of STEM have not addressed this concern. An examination
of the literature concerning the use of STEM reveals that practitioners continue
to rely on an unpredictable rule of thumb called the ‘payoff table method’ [7] to
estimate nadir point values [32, 45, 54, 63, 66].

In the payoff table method, for each k = 1; 2; . . . ; p, the value m̂k given by

m̂k = minfhck; x
iiji = 1; 2; . . . ; pg (4)

is used to estimate the optimal value of problem (Pk), where, for each i 2
f1; 2; . . . ; pg, xi maximizes hci; xi over X . The vector m̂T = [m̂1; m̂2; . . . ; m̂p] is
thus the estimate provided by this method for the actual nadir point m. It is well
known, however, that the entries in m̂ are not reliable. They can either underesti-
mate or overestimate the corresponding values in m, sometimes quite significantly
[32, 45, 48, 66].

Although unreliable, the payoff table method is well known by practitioners
of multiple criteria decision making. It is also easy for anyone with access to
linear programming software to use, especially in contrast to many of the complex
optimization algorithms that have been proposed for finding exact, global optima
for problem (Pk). Furthermore, only theoretical, not actual, warnings have been
published to the effect that, in conjunction with STEM, the payoff table method can
sabotage the effort to successfully solve problem (P). For these reasons, in actual
practice, practitioners of STEM have resisted addressing the well-founded concern
over properly estimating m when using STEM in applied decision making.

4. The citrus rootstock application

Our experience applying STEM to a multiple objective citrus rootstock selection
model (ROOT) that we constructed for Florida will show how in practice, as well
as in theory, the usefulness of STEM can depend crucially upon how accurately
the global optimization problems (Pk), k = 1; 2; . . . ; p, used to find the nadir point
are solved. To explain these applications of STEM, a basic understanding of the
citrus rootstock selection model (ROOT) is needed. In this section, a very brief
overview of Florida’s citrus rootstock selection problem and the model (ROOT)
will be given. Readers interested in a complete presentation of this problem and
the model (ROOT) should consult [18].

Prior to the 1970s and 1980s, citrus rootstock selection in Florida was not a
critical issue, since essentially only two different kinds of rootstocks, Rough lemon
and Sour orange, were used. In fact, these two rootstocks had been used with great
success for many years [46, 49].

However, during the 1970s and 1980s, the situation changed drastically. There
were three reasons for this change. First, a new citrus disease of unknown origin,
called citrus blight, suddenly appeared in Florida and devastated large numbers
of trees. Second, marked increases in a viral disease called tristeza occurred,
which weakened and killed many trees. Third, Florida experienced unprecedented
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increases in the frequency and severity of fruit-damaging freezes in its citrus groves
during the 1980s [27].

As a result of these three factors, major shifts in rootstock selection and increased
research into alternate rootstocks and their characteristics began during the 1980s
[25, 57, 67–69]. Rootstocks such as Cleopatra mandarin, Swingle citrumelo and
Carrizo citrange were introduced, studied, and planted in Florida for the first time.
Some rootstocks were introduced that could resist diseases such as Phytophthora
[61] and tristeza, but could not achieve the high yields or fruit quality of other
rootstocks. Other rootstocks that were introduced had high yields but could not
resist factors such as blight or cold.

While a variety of citrus rootstocks is now used in Florida, there is no single
rootstock that is superior in all characteristics. As a result, Florida citrus growers
now plant mixed portfolios of different types of rootstocks in their groves based
upon the priorities that they have for achieving various goals.

Generally, the overall goals of a citrus grower in Florida today are to plant
a grove that will have a high yield of fruit, excellent fruit quality, and tolerance
of freeze, blight and tristeza [27]. Growers routinely also show ongoing concern
that groves adequately resist phytophthora and drought [27], since both are still
prevalent in Florida.

To reflect these goals and concerns, we have constructed a multiple objective
linear programming model (ROOT) for solving the citrus rootstock selection prob-
lem for a typical Florida grove. In this model, the grower has a choice of n different
types of citrus rootstocks and, for each one, m different types of scions (buds) to
graft onto each rootstock. Each scion-rootstock combination creates a citrus tree
with distinct characteristics. Thus, in the general model (ROOT), a Florida citrus
grower can choose to plant up to mn different types of trees in his grove. Let
i = 1; 2; . . . ;m and j = 1; 2; . . . ; n denote indices representing the m types of
scions and n types of rootstocks, respectively, available to the grower. For each
i = 1; 2; . . . ;m and j = 1; 2; . . . ; n we will call a tree created by budding a scion
i onto a rootstock j a tree of ‘type i� j’.

There are mn decision variables in the model (ROOT). These variables are
denoted xij , i = 1; 2; . . . ;m, j = 1; 2; . . . ; n, where, for each i and j,

xij = no. of trees of type i� j to plant:

The model is concerned with a period of S years following the planting, where S
is a parameter usually of size 10 or more. There are four objective functions to be
maximized in model (ROOT). These objective functions, denoted z1; �z2, �z3,
and �z4, are linear functions of the decision variables, where

z1 = the expected annual grove yield in pounds-solids during the period
of S years,

z2 = the weighted-average cold damage level of the trees in the grove
due to freezes,
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z3 = the no. of trees affected by blight during the period of S years, and

z4 = the no. of trees visibly-affected by tristeza during the period of S
years.

Here, ‘pounds-solids’ is a standard unit of yield used in the citrus industry that
depends upon both the quantity and the quality of the fruit produced [18]. To
measure the cold damage levels of individual trees needed to construct the function
z2, we used an interval scale of 1–5 proposed by Rouse et al. [57]. In this scale,
greater damage from cold corresponds to larger scale values (see Benson et al. [18]
for details).

The model (ROOT) has linear constraints. One of these constraints defines the
total number of trees to be planted in the grove in question. The others specify upper
bounds on the aggregate degrees of susceptibility of the grove to various diseases
(including Phytophthora) and to drought that will be allowed. In the model, the
number of trees to plant and the upper bounds on degrees of susceptibility allowed
are parameters whose values are specified by the DM prior to the solution phase.

5. Global optimization in STEM: the practical need

To test the usefulness of the citrus rootstock selection model (ROOT), we twice
attempted to use STEM to solve an application of (ROOT) to a typical grove of
10,000 citrus trees in the Fort Pierce area of Florida. In the first attempt, following
the lead of other researchers (cf., e.g., [7, 41, 51, 63, 73]), we used the rule of
thumb given by the payoff table method to estimate the global optimal values of the
problems (Pk), k = 1; 2; 3; 4, needed for finding the nadir point m. To our dismay,
this solution attempt failed. However, suspecting that the sources for this failure
were poor estimates for mk, k = 1; 2; 3; 4, provided by the payoff table method,
we undertook a second solution attempt. In this attempt, which succeeded, we
used a much more accurate global optimization method by Benson and Sayin [20]
to estimate the optimal solutions and values to the problems (Pk), k = 1; 2; 3; 4.
These results show that in practice, as well as in theory, the usefulness of the
STEM interactive method for solving problem (P) can depend crucially upon how
accurately the global minimizations over XE called for by STEM are solved.

In both STEM solution attempts, one of the authors (McClure) served as the
DM for the STEM algorithm. Part of his job as Executive Vice President of
Becker Grove Inc. (Fort Pierce, Florida) is to directly manage all grove operations,
including the selection of citrus rootstocks. Another author (Lee), a specialist in
multiple criteria decision making methods, acted as the analyst in charge of guiding
the DM through the steps of STEM and executing the mathematics and computer
routines called for by STEM. The Fort Pierce citrus data required for this application
of the model (ROOT) was collected from various research studies and historical
records [18]. The time horizon used in the application was S = 12 years.

Prior to applying STEM, the DM explained that in the Fort Pierce area, high
and equal priorities are usually placed on maximizing the number of pounds-solids
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yielded and on minimizing tristeza damage. This is because pounds-solids yielded
directly correlates with income, and, in the Fort Pierce area, forecasts call for
tristeza to become an even more serious problem in the next ten years than it is
now.

On the other hand, in the Fort Pierce area, only moderate priority is generally
placed on minimizing damage due to blight, and even less priority is given to
minimizing cold damage. This is because blight, although always a possibility, is
less of a threat in the Fort Pierce area than in other areas of Florida, and freezes in
this area are extremely rare.

Following are summaries of the two solution attempts, with insights into how
and why more accurate global optimization to find the nadir point was the differ-
ence between success and failure. For further details regarding these two solution
attempts, please consult [18].

5.1. FAILED SOLUTION ATTEMPT WITH PAYOFF TABLE METHOD

In the first attempt to solve the Fort Pierce application, we used linear programming
and (3) to find the ideal point M , and we used the payoff table method to estimate
the nadir point m. This resulted in the valuesMT = [95107;�2:770;�415:6; 0:0]
for the ideal point and in the estimate m̂ for the nadir point, where

m̂1 = 89750;

m̂2 = �3:589;

m̂3 = �993:8; and

m̂4 = �1375:0:

For each k = 1; 2; 3; 4, using the payoff table estimate m̂k formk, formulas (1)–(2)
were used as called for by the STEM algorithm to calculate the minimax weights
wk, k = 1; 2; 3; 4, needed to define the linear programs (PK) solved in STEM.
This resulted in weight values of w1 = 0:0475, w2 = 0:1916, w3 = 0:3814 and
w4 = 0:3795.

With these values for m̂k and wk, k = 1; 2; 3; 4, the analyst and the DM
executed the STEM algorithm for the Fort Pierce application. The analyst solved
the necessary linear programming problems on an IBM personal computer via the
simplex method implementation in the LINDO [59] software package. The DM
terminated the STEM procedure after six iterations. Together, the analyst and the
DM spent approximately 75 minutes executing these six iterations of STEM.

Table I summarizes the criterion value results for each of these six STEM
iterations. In particular, for each iteration h, this table gives the index set K of the
relaxed criteria, the criterion values hck; xhi; k = 1; 2; 3; 4, of the weakly-efficient
point found by STEM, and, in square brackets, the lower limits hck; xhi��k; k 2
K , to which the DM was willing to relax the criteria k 2 K .

Contrary to our hopes, the DM explained that he terminated the STEM process
in this case after six iterations out of a sense of frustration rather than because he

jogo418.tex; 30/06/1998; 13:20; v.7; p.12



GLOBAL OPTIMIZATION IN PRACTICE 365

Table I. Criterion values and relaxation limits for STEM using payoff tables

Criterion values and relaxation limits
Iteration K k = 1 2 3 4

h = 1 f2, 3g 76128 �2:86 �450:0 �12:8
[�3:40] [�600:0]

2 f2, 3g 81685 �3:18 �600:0 �7:5
[�3:40] [�700:0]

3 f2, 4g 84034 �3:30 �700:0 �6:2
[�3:40] [�100:0]

4 f2, 3g 84034 �3:30 �658:1 �100:0
[�3:40] [�800:0]

5 f2g 86159 �3:40 �800:0 �4:97
[�3:50]

6 — 86159 �3:41 �790:5 �4:97

felt he had found a most preferred solution. After iteration six, the DM explained,
he felt from viewing the results in Table 1 that he could not reasonably expect to
find a most preferred solution or a nearly most preferred solution via STEM. He
was especially disappointed that he could not find solutions with larger values in
criterion number 1 (expected annual yields).

To help discover why this STEM solution attempt failed, we first asked the DM
to explain the rationale for his responses during the STEM iterations. From his
explanations, two general themes emerged.

First, the primary thrust of the DMs responses was to attempt to find a feasible
solution with an expected annual grove yield of 87500 pounds-solids or more.
The DM felt that this was an essential element of any solution, based upon his
knowledge of grove yields in the Fort Pierce area. Furthermore, he felt that the
model could reasonably be expected to yield many such solutions, since, according
to the payoff table estimate, the yields for the efficient solutions, for instance, range
from m̂1 = 89750 to M1 = 95107 pounds-solids.

Second, to attempt to find solutions with larger expected yields, the DM con-
centrated on relaxing his aspiration levels for cold damage and blight, but never to
levels below �3:50 and �800:0, respectively. He concentrated on lowering these
two aspiration levels rather than his tristeza aspiration level because of the higher
priority that he placed on resistance to tristeza than on resistance to cold or blight,
and because in most iterations he was less concerned with the cold damage and
blight criterion values than with the tristeza criterion value. His decision never
to relax the aspiration levels for cold damage and for blight below �3:50 and
�800:0, respectively, arose from his judgement that, based upon the payoff table
ranges [m̂2;M2] = [�3:589;�2:770] and [m̂3;M3] = [�993:8;�415:6] for these
two criteria, values below �3:50 and�800:0 would be unacceptably close to their
smallest possible values over the efficient set.
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After interviewing the DM and obtaining this information, we decided to attempt
to assess the accuracy of the estimates m̂k, k = 1; 2; 3. We knew how, in theory,
inaccurate global estimates of the components of m could inhibit the successful
performance of STEM (cf. Section 3). We focused on the accuracy of m̂k, k =
1; 2; 3, because, from the comments of the DM, we felt that he considered criteria
1-3 more heavily than the fourth criterion during the STEM iterations.

We first found that m̂1 = 89750 > m1, i.e. that m̂1 is an overestimate of the
true minimum m1 of z1 over XE . To deduce this, we first tested each weakly-
efficient solution xh, h = 1; 2; . . . ; 6, generated by STEM for efficiency by using
a simple linear programming test [9]. We found each solution to be efficient. Next,
we observed from Table I that each of the six criterion values z1 in the column
k = 1 satisfied z1 < m̂1. Since each solution xh is efficient, this immediately led
us to the conclusion that m̂1 > m1.

Notice that since m̂1 > m1, the use of m̂1 in (1) instead of m1 led to a value
for w1 of 0.0475 in (2) which underestimates the true value of w1. Also, from the
constraints of the linear program (PK) solved in Step h.1 of STEM, it can be seen
that using inappropriately-small values for w1 there will generally yield solutions
to problem (ROOT) with smaller values for z1 than would be obtained by using the
correct value for w1. Therefore, the fact that m̂1 = 89750 overestimates m1 could
have, among other things, significantly contributed to the inability of the DM to
find solutions with expected annual yields at or above his aspiration level of 87500
pounds-solids.

Next, we found that for k = 2; 3; m̂k � mk, i.e., that m̂k either overestimates
or correctly estimates mk. To deduce this, for each k = 2; 3; we tested the solution
xik 2 X satisfying m̂k = hck; x

iki generated by formula (4) of the payoff table
method for efficiency by again using the test in [9]. For each k = 2; 3; we found
that xik 2 XE . For each k = 2; 3, since m̂k = hck; x

iki, this led us to conclude
that m̂k � mk. However, unlike the case for k = 1, we could not definitely show
mathematically that m̂k strictly overestimates the true minimum mk for k = 2; 3.

Although m̂2 = m2 and m̂3 = m3 were possible, the unsatisfactory STEM
results and the comments of the DM caused us to suspect that, in fact, either
m̂2 > m2 or m̂3 > m3, or both, were true. To see why, notice that by using
(3) and the payoff table formula (4) for calculating M1 and m̂1, respectively, we
had found actual feasible solutions with expected yields of M1 = 95107 pounds-
solids and of m̂1 = 89750 pounds-solids. This proved that rootstock planting
choices exist which more than satisfy the DM’s aspiration level for z1 of 87500
pounds-solids. Yet, during the STEM procedure, in spite of the DM’s continual
reductions of his aspiration levels for the cold damage and blight criteria, STEM
failed to find any plans with expected yields of more than 86159 pounds-solids (cf.
Table I). Recall, however, that based upon the payoff table ranges of compromise
[m̂k;Mk]; k = 2; 3, for these two criteria, the DM had decided never to reduce
these two aspiration levels below �3:50 and �800:0, respectively. Given smaller
values for one or both of m̂k, k = 2; 3, it is possible that the DM would have
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been willing to allow one or both of these aspiration levels to be reduced further,
in which case STEM may have succeeded in generating solutions with adequate
expected yields. Taken together, these observations suggest the possibility that the
values for one or both of m̂k, k = 2; 3; are inappropriately large.

5.2. SUCCESSFUL SOLUTION ATTEMPT WITH IMPROVED GLOBAL OPTIMIZATION

Since the attempt to solve the Fort Pierce application by using STEM with the
standard payoff table method failed to yield a satisfactory solution, we made a
second attempt to solve the problem. As before, we used STEM as the main tool.
However, having discovered that payoff table overestimates of mk, k = 1; 2; 3,
could have significantly contributed to the failure of the first solution attempt, we
used a more sophisticated global optimization procedure by Benson and Sayin to
estimate these values for this attempt. This procedure, a face search heuristic for
global optimization over XE [20], was chosen for its computational ease, proven
accuracy, and amenability to user control.

From the Benson–Sayin method, we found the estimate ^̂m for m, where

^̂m1 = 76000 < m̂1;

^̂m2 = �3:717 < m̂2;

^̂m3 = �1380:9 < m̂3; and
^̂m4 = �1375:0 = m̂4:

Since ^̂m � m is guaranteed [20], these results show that for each k = 1; 2; 3, the
Benson–Sayin estimate ^̂mk is superior to the payoff table estimate m̂k. Similarly,
since ^̂m � m, these results confirmed our suspicion that the payoff table estimates
m̂2 and m̂3 strictly overestimate m2 and m3, respectively, and they reconfirmed
our discovery that m̂1 > m1.

For each k = 1; 2; 3; 4, using the Benson–Sayin estimate for ^̂mk for mk, we
found via (1)–(2) STEM weight values of w1 = 0:1389; w2 = 0:1752; w3 =
0:3752 and w4 = 0:3106. For each k = 1; 2; 3; 4, using the new estimate of
^̂mk of mk and the new weight value wk, the analyst and the DM once again
executed the STEM algorithm for the Fort Pierce application. After two iterations,
which together took approximately twenty minutes, the DM terminated the STEM
procedure.

Table II. Criterion values and relaxation limits for STEM using the Benson–Sayin algorithm

Criterion Values and Relaxation Limits
Iteration K k = 1 2 3 4

h = 1 f2,3g 79233 �3.05 �485.3 �31.5
[�3.60] [�900.0]

2 — 88464 �3.51 �900.0 �13.2
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Table II summarizes the criterion value results for each of the two iterations for
this solution attempt. The format of the table is the same as that of Table I.

Unlike in the first solution attempt, the DM terminated the second STEM
solution attempt with a final solution xf and criteria values with which he was quite
pleased. The DM explained that he felt sufficiently confident that this solution was
either a most-preferred solution or close enough to a most-preferred solution to
terminate the process.

By quizzing the DM on the rationale for his responses during the second solution
attempt, and by comparing the results of this solution attempt with those of the first
attempt, we concluded that the second attempt succeeded where the first did not
because of the improved accuracy of the Benson–Sayin global estimates of mk,
k = 1; 2; 3, compared to the payoff-table estimates. This improvement manifested
itself in several ways. Two of these were especially crucial.

First, by using ^̂m1 = 76000 as an estimate form1 in (1), instead of m̂1 = 89750
as in the payoff table approach, the weight w1 computed via (2) with the Benson–
Sayin approach had a significantly-larger value (0.1389) than the value (0.0475)
that it had with the payoff table approach. This helped to give the DM the ability to
find solutions via the Benson–Sayin approach with higher yields than those found
via the payoff table approach. Mathematically, this ability can be explained by the
fact that as larger values for w1 (see (2)) are used in the linear program (PK) solved
in Step h.1 of STEM, solutions (xh; th) with larger values for z1 will, in general,
be generated.

Second, by using the Benson–Sayin values ^̂m2 = �3:717 and ^̂m3 = �1380:9
as estimates for m2 and m3, instead of using the larger estimates m̂2 = �3:589
and m̂3 = �993:8 found via the payoff table approach, the DM obtained a more
accurate assessment of the ranges of zk, k = 2; 3, over XE . Based upon this
knowledge, he explained to us that in the second solution attempt, he was willing
to relax his aspiration levels for the cold damage and blight criteria further than
in the first attempt. In particular, in the second solution attempt he was willing
to relax the cold damage and blight aspiration levels to values as low as �3:60
and�900:0, respectively, rather than only to �3:50 and �800:0 as before. Indeed,
the DM implemented these relaxations in the first iteration of the second solution
attempt (see Table II). Together with the larger value ofw1, these deeper relaxations
allowed STEM to generate the high expected-yield solution in iteration 2 that could
not be found in the first solution attempt.

After the execution of the second STEM solution procedure, the DM was
quite convinced that the STEM solution process using the Benson–Sayin global
optimization heuristic was superior to both the first solution process, which used
the payoff table method, and to the current informal rootstock selection process
used at Becker Groves. He cited several reasons for this, including the ease of the
process and the ability it gives the DM to actively explore and learn about the
available solutions and their tradeoffs with respect to criteria values [18]
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The DM also was quite convinced that the final solution xf given by the second
solution attempt is superior to the planning schemes generally used at Becker Grove.
In particular, while the yields, cold damage level, and tristeza level expected using
xf (see Table II, row h = 2) are essentially the same as recent plantings at Becker
Grove, the blight protection expected using xf is significantly greater (see [18] for
further details).

6. Main conclusions

There are a number of conclusions and lessons of transferable value that can be
derived from this research. The major ones are as follows.
1. In both theory and practice, the use of appropriate global optimization methods

can be crucial to the achievement of success in applied multiple objective
decision making.

2. In actual applications, inaccurate global optimization estimates of nadir values
when using the STEM method for interactive multiple objective linear pro-
gramming can and have frustrated decision makers. The use of inappropriate
global optimization methods in these instances can and has led to unsatisfactory
results.

3. Exact and approximate global optimization procedures are available which,
when used to find nadir points in STEM, considerably increase the probability
of allowing a decision maker to successfully find a most preferred solution to an
applied multiple objective linear programming model via the STEM method.

4. In general, the use of the unreliable payoff table method to globally estimate
nadir points in real-world multiple objective linear programming applications
is to be discouraged. Instead, the use of any of a number of more accurate and
reliable global optimization methods is recommended.
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